Reducing Groundwater Conditions at Forest-Products Industry Sites:

2. Field Water-Quality Measurements

Glen M. Wyatt, LG, LHG Senior Hydrogeologist

Weyerhaeuser Company
Environment, Health and Safety--Technical Systems
Weyerhaeuser Technology Center, Federal Way, WA

4/9/2003 glen.wyatt@weyerhaeuser.com

Reducing-Environment Groundwater

- Lab indicators
 - High dissolved organic carbon
 - High color
 - High iron, manganese
 - No nitrate
 - Little to no sulfate
 - Poor cation-anion balance
- Field indicators
 - Colored sample
 - DO <1 to 0 mg/L</p>
 - Negative redox

Understand the Site Hydrogeology

- Utilize existing on-site and off-site data
- Make good observations during drilling
- Aquifer Tests
 "We dropped a slug into the well and measured its response."

No animals were injured during preparation of this image

Always get an accurate water-level measurement

Oxidation-Reduction Potential (ORP)

- Geochemical indicator
- Redox potential (Eh)
 - + Oxidizing
 - Reducing
- Measure in the field with a redox electrode (platinum or silver)
- Use a flow cell
- Or, measure DO, Fe(II), and sulfide

Dissolved Oxygen (DO)

- O₂ solubility in water ~ 8 to 11 mg/L
- Groundwater DO generally below O₂ solubility
- DO Meter (electrometric method)
 - Meters use a membrane-type probe, carry spare membranes and filling solution
 - Calibrate meter using humid air in a bottle
 - Do not allow sample to come into contact with air--use a flow cell
 - Subject to interferences in reducing environments
- Field test kit (colorimetric method)
 - Ampoules
 - May have color interferences

Field Iron Measurements

- Fe II--ferrous iron
- Fe III--ferric iron
- If total Fe > ~1mg/L, DO <
 0.5 mg/L, Fe II will be major form
- CHEMetrics test kits
 - Ferrous Iron (<10 mg/L)</p>
 - Ferrous and Total Iron (to 250 mg/L)
 - Filter the sample before doing the test
 - Takes 1-2 minutes per test
- HACH Spectrophotometer
 - 1,10-Phenanthroline method

Field Iron Measurements

	Field					Lab	
	рН	DO	Iron(II)	Iron	Iron(II)	Iron, diss	Iron, total
Site ID	(units)	(mg/L)	(mg/L)	(mg/L)	(%)	(mg/L)	(mg/L)
LMW-03A	6.9	0.2	3.70	4.80	77%	4.35	4.39
LMW-04A	6.0	6.0	0.04	0.27	15%	<0.050	0.05
LMW-04B	8.3	0.3	0.04	0.06	67%	<0.050	<0.050
LMW-06B	7.3		2.30	9.00	26%	11.0	12.4
LMW-14D	6.8	0.5	2.40	2.69	89%	2.70	2.84
LMW-14S	6.7	0.4	3.20	5.16	62%	4.84	5.31
LMW-15S	7.2	0.3	0.08	0.10	80%	0.27	0.59
LMW-17D	7.5		3.70	6.50	57%	8.89	8.95
LMW-17S	7.2		4.30	8.70	49%	9.59	11.4
LMW-18D	7.4	0.3	0.06	0.07	86%	<0.050	<0.050
LMW-18S	6.6	0.5	10.28	12.64	81%	11.7	12.4

Field iron (II) and total iron analyses by HACH 1,10-phenanthroline spectrophotometric method

Field Alkalinity

- Use HACH Digital Titrator with pH meter
- 0.16 or 1.6 N H₂SO₄
- 50 mL filtered sample
- Titrate to about pH 3.8; use small increments of acid around pH 10, 8.3, and 4.5
- Takes 10-30 minutes/sample
- Use USGS Alkalinity
 Web Calculator
 http://oregon.usgs.gov/alk/

Titration endpoints: Hydroxide (pH ~ 10.5); Carbonate (pH ~8.3); Bicarbonate (pH ~4.5)

Sulfide

Cation-Anion Balance Check

- Convert from mg/L to milliequivalents per liter
 meq/L = ionic mass divided by the valence
- Sum the cations (Σ cations)
- Sum the anions $(\Sigma \text{ anions})$
- Ionic balance (% difference) = $100 \ (\Sigma \text{ cations} \Sigma \text{ anions}) / (\Sigma \text{ cations} + \Sigma \text{ anions})$
- ◆ ±10% is ok; ±5% is better in aerobic environment
- May be off by 50% or more in reducing environment

Common Data Check: Cation-Anion Balance

- Factors affecting cation-anion balance
 - Fe(II) about 1 200 mg/L
 - Possible iron carbonate, sulfate, or chloride precipitate after sample collection (recently saw iron oxide and iron phosphate precipitation 2 hrs after sample collection)
 - Lab vs. field alkalinity (no hold time)
 - Need sulfide concentration
- Balance can not be used as a reliable lab QA method in reducing conditions
- And then there are bad laboratory methods...

Tannins and Lignins (SM 5550)

- Required by many permits
- Method responds to many substances
 - Ferrous iron, manganous ion, sulfide, canide, nitrate, sugars, humics
- No tannin-lignin standard
- Response depends on standard used
- The method even says "interpret such results with caution" if the types of tannins present in the water sample are unknown
- Don't use this method. Ever.

Phenols by 4-Amino-Antipyrene

- SW-846 9065/9066; SM 5530 (4-AAP)
- Phenolic compounds react with different efficiencies
- OH
 2,6-Dichlorophenol
 2,4-Dichlorophenol
 2,4,6-Trichlorophenol
 2,4,5-Trichlorophenol
 2,3,4,6-Tetrachlorophenol
 Pentachlorophenol

 Cl_X

4-Chlorophenol

- Substituted phenolics don't react like phenol
 - Pentachlorophenol is not measured
- 4-AAP test method creates phenolics
 - Acid distillation of sample at >100°C
 - Humic or wood extractives create compounds similar to phenolics (e.g. guaiacol)
- GC/MS fails to confirm these phenolic compounds (Neufeld and Paladino, 1985)

